MCP Server (mcp/)
Exposes the Fluid Attacks platform capabilities as MCP tools:
- Vulnerability management (query, filter, analyze)
- fetch_group_weaknesses
- fetch_weakness_vulnerabilities
- get_vulnerability_details
- get_group_weaknesses_report
- Analytics and reporting (risk metrics, trends)
- get_organization_analytics
- get_group_analytics
- Asset discovery (Git roots, IP roots, URL roots)
- get_group_git_roots
- get_group_ip_roots
- get_group_url_roots
- fetch_group_root_vulnerabilities
- DevSecOps integration (Forces agent, CI/CD)
- get_devsecops_agent_executions
- get_unsolved_events
- Organization and group management
- get_organization_groups
- get_organization_groups_information
- get_group_information
- get_group_remediation_information
- get_group_weaknesses_overview
- Knowledge base search (Kendra integration)
- search_related_articles
- get_articles
- Prompts for common workflows (scanners, reports, GitHub CI)
- run_sca_scanner
- run_sast_scanner
- run_sca_and_sast_scanners
- GraphQL queries to the Fluid Attacks API
- query
- describe_graphql_type
FastAPI application (app/)
REST API endpoints:
/streaming - Streaming conversation endpoint
/conversation_context_request - Retrieve conversation history
/reset_conversation_context - Clear conversation history
/_used_tools - Get tools used in conversations (Used for evaluation)
/health - Health check
MCP server mounted at /mcp
AI Agent system (agent/)
- Streaming conversation handling
- Memory management with chat caching (Valkey/Glide)
- Conversation resumption
- Guardrails for safe interactions
- Multi-model support (Claude Sonnet 4.5, Sonnet 4, Haiku)
Key features
- Read-only access: queries platform data; no modifications
- Multi-language support: responds in the user's language
- Conversation memory: maintains context across interactions
- Streaming responses: real-time streaming
- Observability: Logfire tracing and Bugsnag error tracking
- Security: token-based authentication with user validation
Technology stack
- FastAPI for the web framework
- http-mcp for MCP server implementation
- Pydantic AI with Bedrock for LLM integration
- Rath for GraphQL client operations
- Valkey/Glide for conversation caching
- LangSmith for tracing and monitoring